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ABSTRACT. A method using a Green's function is developed for computing transient temperatures in

a semitransparent layer by using the two-flux method coupled with the transient energy equation. Each

boundary of the layer is exposed to a hot or cold radiative environment, and is heated or cooled by

convection. The layer refractive index is larger than one, and the effect of internal reflections is included

with the boundaries assumed diffuse. The analysis accounts for internal emission, absorption, heat

conduction, and isotropic scattering. Spectrally dependent radiative properties are included, and transient

results are given to illustrate two-band spectral behavior with optically thin and thick bands. Transient

results using the present Green's function method are verified for a gray layer by comparison with a finite

difference solution of the exact radiative transfer equations; excellent agreement is obtained. The present

method requires only moderate computing times and incorporates isotropic scattering without additional

complexity. Typical temperature distributions are given to illustrate application of the method by

examining the effect of strong radiative heating on one side of a layer with convective cooling on the

other side, and the interaction of strong convective heating with radiative cooling from the layer interior.
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absorption coefficient of semitransparent medium, m"t

specific heat of semitransparent medium, J/kg-K

coeffcients in Green's function

thickness of semitransparent layer, m

coefficients in homogeneous solution

blackbody energy fraction at t(X,'0 in large frequency band

blackbody fractions of external radiation fluxes in large frequency band
Green's function for radiative heat source

the flux quantity 2(q_ + q_), W/m 2, _ = G/oF

convective heat transfer coefficients at x = 0, D, W/m2K

dimensionless parameters, ht/oT_ and h2/oT_

thermal conductivity of layer, W/m'K

the quantity [31(2(1 - fj)]u2

refractive index of radiating medium

conduction-radiation parameter, k/4oT_D

the quantity (2/3KD)[(l+pi)/(1-pl)]

radiative flux in the x-direction, W/mS; _ -- ch/o_

radiative fluxes in positive and negative x directions, W/m s

external radiation fluxes oR, and oT4,2 incident at x = 0 and D, W/m s

dimensionless radiation fluxes, q,l/o_ = (T.I/T._ ( and qr2/oT_ = (T,2/'I'_ (
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absolute temperature, K; t = T/T i

gas temperatures for convection at x = 0 and D, K

dimensionless gas temperatures, TsJT i, T_/Ti
initial uniform temperature (used as a reference temperature), K

temperatures of blackbody radiative surroundings at x = 0 and D, K
coordinate in direction across layer, m, X -- x/D
time, s

optical thickness of layer, (a + o,)D
cutoff wavelength in vacuum, _m
radiation frequency, s"_

density of semitransparent medium, kg/m 3

external and internal reflectivities at a boundary
Stefan=Boltzmann constant, W/m_K 4

scattering coefficient in layer, m"_

dimensionless time, (40T_/pcD)0

scattering albedo, o,/(a + 0,)
Subscripts
L,S spectral bands with large and small frequencies

2. INTRODUCTION

For semitransparent materials where thermal radiation affects internal temperature distributions, transient
behavior has been studied much less than steady state. There is, however, a significant need for detailed

transient solutions to examine heat transfer and thermal stress behavior of ceramic components during
reentry, thermal protection coatings, tempering of glass windows, porous burners and insulation systems,
liquid drop space radiators, and some high temperature components in advanced aircraft engines. For
these applications, internal emission is large, and unknown temperature distributions must be determined
that are time accurate. The references considered here are for solid materials that have an index of

refraction larger than one so internal reflections occur within the semitransparent region.

An important early analysis was on the heat treatment of glass! Specular interface reflections were

included, and two spectral absorption bands were used along with an opaque region for wavelengths
larger than 4 pm. An analysis of transient temperature distributions in spacecraft windows for the
thermal environment during reentr,fl followed somewhat along the earlier principles! A zonal method

was used with a quadratic temperature distribution assumed in each zone. Some experimental
verification was obtained by exposing single-pane windows to a high temperature radiation source and
measuring transient surface temperatures. For a similar application, a recent study is for a silica window
in high speed flow_. Recent work 4 also provides additional experimental verification of transient

temperature predictions for a glass plate. The plate was initially heated to a high temperature, and was
then exposed to the ambient room on one side and to free convection and a radiant heater on the other

side. Internal radiation effects were found to be very significant, as predicted by a two-band spectral

calculation. Additional calculations for glass plates s used a nodal analysis based on a zonal method.
General external boundary conditions were used with both radiation and convection.

The analyses for glass plates have radiation combined with heat conduction, and scattering is negligible.

In contrast a study with scattering that does not involve heat conduction is the cooling of a layer of liquid
drops for dissipation of waste heat in the cold vacuum of outer space 6. Isotropic scattering was included

within the droplet cloud. The resulting integral equation for the radiative source function was solved by
iteration at each time step, and a forward finite-difference extrapolation was used in time.

Many of the recent transient radiation analyses use some type of finite-difference method for solving the
transient energy equation. The instantaneous local radiative heat source term in the energy equation has



been evaluated by direct numerical integration 7,by using the two-flux equations =,by various expansion

method_ _° and with the differential approximation! i A semi-explicit finite-difference procedure with a

fixed grid was used for a plane layer with scattering included! z Some effects of anisotropic scattering on

transients have been examined? Transient solutions using the exact radiative transfer equations 7 are used

to verify the accuracy of the present Green's function method. These results are for a layer with

refractive index larger than one with external convection and radiation at each boundary 7.

Most of the transient studies have been one.dimensional, usually for single plane layers. For a multilayer

compositel, ' a hybrid numerical method was used; the spatial variation in temperature was solved with

finite differences, and a fourth-order Runge-Kutta method was used to extrapolate forward in time. For

a two-dimensional rectangular region I) a modified differential approximation was used for the radiative

portion; a Crank-Nicolson finite-difference procedure was used for the transient energy equation. A fully

implicit finite-difference solution ts used an alternating direction implicit method for transient solutions

in a two-dimensional square region. Two-dimensional Gaussian integration was used to evaluate the

local radiative source in terms of the instantaneous temperature distribution.

The present analysis develops a Green's fimction solution for the radiative source term using the two-flux

equations. Various multi-flux methods have been discussed as a simplification for computing the

radiative flux term in the energy equation_. _ For the general boundary conditions of external convection

and radiation on a layer with diffuse interfaces and unspecified surface temperatures, it was shown that

the two-flux method can be used to predict accurate temperature distributions and heat fluxes for steady

state_. 7 By use of a shooting method to evaluate the radiative flux equations =,the two-flux method was

used to obtain transient solutions in materials with large refractive indices typical of ceramics. The

shooting method, however, was limited to layer optical thicknesses less than about 5 where sufficient

coupling exists between values at the two boundaries. Using the Green's function method, transient

results are obtained here for optical thicknesses up to 40 and are compared with the opaque limit. An

advantage of the two-flux method is that isotropic scattering is included without any additional

complication. Typical transient results with large scattering are given to illustrate that scattering effects

can be readily examined. The analytical relations are written for two spectral bands, and the form of the

two-band equations shows how they can be expanded to include more detailed spectral variations.

3. ANALYSIS

A plane layer as shown in Fig. 1 has thickness D and radiative absorption and scattering properties that

depend on frequency. The layer material is a semitransparent absorbing dielectric such as a ceramic, that

is heat conducting and isotropically scattering with a refractive index n > 1. The layer boundaries are

assumed sufficiently rough that they can be assumed diffuse! = For the results given here and for the

nondimensionalization used, the layer is initially at uniform temperature Ti, but the theory applies for an

arbitrary initial temperature distribution where Ti would then be a characteristic reference temperature.

To begin the transient, the layer is subjected to surroundings so each boundary can receive radiative

energy and is in contact with a gas that provides convective heating or cooling. Transient temperature

dism"outions are obtained in the layer until steady-state is reached corresponding to the external radiation
and convection conditions.

3.1. Energy Equation and Two-Flux Relations for a Gray Layer

The analysis is developed first for a gray layer and is then extended for spectral calculations. The energy

equation in dimensionless form for the transient temperatures in the layer is7,
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= N (1)

a._ ax 2 4 ax

where -(l/4)oq,(x,'c)/ax is the local radiative heat source arising from absorption, emission and

scattering. Properties are assumed independent of temperature. The a_(X,_)/aX is obtained in terms

of t(X,¢) from the two-flux relations which have been found to provide accurate results in previous

steady-state _7and transient' studies. The two-flux equations using the Milne-Eddington approximation

arei, 6

a_,Oc,,)

OX
= KD(I- fl)[4n2t4(X,_)- (}(X,_)] (2a)

with _X,x) related to the radiative flux _(X,x) by,

a 6(x,_)
0X

= - 3 % _,(X,_) (2b)

The _ and CTare related to the positive and negative radiative fluxes shown in Fig. 1 by _ = q_ - i_ and

3.2. Boundary and Initial Conditions

For a semitransparent material there is radiant absorption only within the material interior so the

conduction and convection conditions at the layer boundaries are

x-o = - "_'[t't - t(0,_)] • a___J =- 4_[t(l,x) - teal (3a, b)

The radiative boundary conditions must include the effects of external and internal reflections at the

surfaces that are subjected to dimensionless external diffuse fluxes i_1 and q,2. By considering the incident



and reflected fluxes at and across an interface, the following boundary relations between _3 and i_ were
developedl, 7

1-pOqn 2 l+pi- - _ _,(o,r)* 4 1-o' (4a)

(4b)

To begin the transient solution, the specified initial condition for the results given here is a uniform

temperature T(x,0) -- Ti so t(X,0) = 1, but the method developed is valid for an arbitrary t(X,0). An

initial distribution is also needed for 0_(X,0)/0X. This is found by solving Eqs. (2a) and (2b) with

t(X,Q = fiX,0), and the result is conveniently obtained from the Green's function solution that is

developed. ARer substituting aq,(X,0)/0X into the energy equation, the transient solution is advanced

one time increment by an implicit finite-difference solution. The new temperature distribution, t(X, A Q,

is inserted into the Green's function solution to obtain ai_(X, Ax)/OX and the energy equation is then

solved implicitly for t(X,2Ax). The process is repeated until steady conditions are achieved. The sections

that follow will develop the Green's function solution and the implicit finite-difference solution of the

energy equation.

3.3. Green's Function for aq,(x,x)/ax for a Gray Layer

The Green's function is developed for a gray layer and is then extended in the next section for spectral

calculations. Equation (2b) is differentiated in X and is used to eliminate 0_(X,Q/0X from Eq. (2a); this

yields a second order equation for Cr(X,x),

daG a 6(X,¢) 4m 2n2t4(X,x) (5)- m = -
dX 2

where m 2 = 3XD2(I - fl). The z functional notation is omitted for convenience in what follows. The

homogeneous part of Eq. (5) is satisfied by cosh(mX) and sinh(mX) so the Green's function must have

the forint, '

{C,(_)coshmX + C2(_)sinhmX 0 ,_X <g(X,_) = C3([ ) cosh mX + C4(_) sinh mX [ < X ,: I
(6)

To obtainthecoefficientsC_(_)...C4(_),theboundary conditions(4a,b) arewritteninterms of C-by using

Eq. (2b),

l-p* 2 I+£_d_I
4 ,- 3, DL-,,z (7a)

l-p°. 2 1_+ pi dG[

CJ(1) = 4 ""-'_.qr2 pi '1 - p' 3K D 1 dXlx,l

The g(X,_) in Eq. (6) must satisfy the homogeneous forms ofEqs. (7a, b),

2 I+ p_.' dg = 0 ; g(1) + - = 0

s(o) D pi x. 3, D1 dX

(7b)

(ga, b)



By usingEq. (6) in Eqs. (8a, b) to evaluate Cx(_)...C4(_), the g(X,_) is obtained in the form

t Cs(_) [ sinh mX + P m cosh mX ] 0 ,: X <g(X,_) = C6(_ ) [ sinh m(l-X) + Ym cosh m(l -X) ] _ < X < I

where P = (2/31¢D)[(l+pi)/(l-pi)].

(9)

The Cs(_) and C6([) are obtained by applying the two conditions 19 that g(X,_) is continuous at X = _,

and that with increasing X the derivative ag(X,[)/ax passes through a discontinuity of -1 at X = _. This

yields the two relations,

C6(_)[sinh m(1-_) + Pm cosh m(1-_)] ffi Cs(_)[sinh m_ + Pm cosh m_] (lOa)

C6(_)[-m cosh m(l=_)= Pm 2 sinh m(l=_)]

- Cs(_)[m cosh m_ + Pm2 sinh m_] = -1
(lOb)

Equations(10a,b) are solvedforCs(_) and C6(_),and aftersubstitutingintoEq. (9) thisgivesthe final

form of the Green'sfunctionas,

sinh m(l-_) + Pm cosh m(1-_)"miO+P2m 2)sinh m + 2Pro cosh m]

x[ sinh mX + Pm cosh mX ]

g(X,_) = r sinh m_ + Pm cosh m_

[m[(l +P2m2)sinh m + 2Pro cosh m]

x[ sinh m(l-X) + Pm cosh m(l-X)]

O<X<_

_<X< 1

(ll)

The g(X,_) in Eq. (11) will be used to account for the nonhomogeneous term in Eq. (5) when computing

PJ(X,¢) at each time step during the transient calculations. To obtain the complete solution for CffX,_)

the solution for the homogeneous part of Eq. (5) is needed. This is of the form (;h(X) = E_ sinh(mX) +

F_ cosh(mX). The boundary conditions Eq. (7a, b) are applied to evaluate E_ and F_qwith the result

(I +P2m2)sinh m +2Pm cosh m

{[sinhm(1-X)

+Pm cosh m(1-X)]_a + [sinh mX + Pm cosh mX]_a }

(12)

Then adding (_b(X) and the nonhomogeneous solution obtained with g(X,[), the general solution of

Eq. (5) at each time step is

{3(X::) = Gb(X) + 4m 2n 2fol g(X,_)t4(_:)dg (13)

The GCX,_) is substituted into Eq. (2a) along with P(X,z) to evaluate 0_(X,z)/0X which is used in

Eq. (1) to solve for the temperature distribution at the next time step.



3.4. Relations for a Two-Band Spectral Calculation

The relations developed for a gray material can be further developed for transient spectral solutions. To

show how this is done, relations for two spectral bands are given. They are readily extended to more

bands. Letting L and S designate bands with large and small frequencies, the radiative term needed for

Eq. (1) is the sum of the large and small frequency contributions,

o ,s(x: )
= + (14)

0X 0X 0X

FromEq. (2a),

0 ,dX:)
0X

= ICDL(1 - QL)[ 4n 2t4(X,'_)FL(t) - (_L(X,'c)] (15)

where FL(t) is the blackbody fraction at t(X,_) in the large frequency band. A similar relation is written

for 0q_s/0X for the small frequency band. The ¢3L(X:) for Eq. (15) is found from Eq. (13) written for
the L band,

GL(X,'c) = GhL(X) + 4m:n 2for gL(X,_)t 4(_,.C)FL(t)d _ (16)

and similarly for CJs(X:). The homogeneous solution needed for Eq. (16) for the L band is obtained
from Eq. (12) as

(_ta. = 4 1-p ° 1
2 2

I- pi (1 +PLmL)Sinh m c + 2PLmLCOSh m L

x {[sinh me(l-X) + PLmcCosh mL(1-X)]_rlFiL

+[sinh mLX + PLmc cosh mcX ] _2Fa. )

(17)

The Green's function in Eq. (16) for the L band is obtained from Eq. (11) as,

=

I" sixth mr,(1 -O + PLmL cosh mL(l -_) ]

2 +mg[(1 +pL2mL)siahmL 2PLmx coshmi. ]J
×[ siah mLX + PLmL cosh mLX ]

l [m sinh m L _ + PLmL cosh m L ][

L[( 1 +P2 ml.2)sinh mL + 2PLmL cosh mL]

x[ sinh mg(1 -X) + Pgmg cosh mL(l-X) ]

O_X<_

_<X<I

(18)

Similar relations are written for the S band. With these relations Eq. (15) can be evaluated for the L

band, and similarly for the S band; then 0_b/c3X is obtained from Eq. (14) for use in Eq. (1).



3.5. Numerical Solution

Starting with the initial t(X,0), the Green's function is used to obtain G(X,0), and the c3_(X,0)/aX is

evaluated from Eq. (2a) or Eq. (14) as described. Using Eq. (1), t(X,_) is integrated forward in time

using the following implicit finite-difference algorithm at the interior points of a uniform grid:

2NA_ ] NAx
NA_ t(X-AX,x+A_)+ I+-- t(X,x+A_) t(X+AX,_+A_)

(ax)2 (ax)2 (ax)2
(,9)

= a_ aqr I
4 aXl ,

At the boundaries Eq. (19) is applied and the t(-AX, x+Az) and t(I+AX,_+AQ that appear are

eliminated by using the boundary conditions Eqs. (3a,b) in the forms,

t(AX,x +Ax)- t(-AX,x+Ax) = HI

2AX 4N [tsl t(0,x + Ax)] (20a)

t(I+AX,'¢ +A'Q- t(1 - AX,r+A'_) _

2AX

H 2
[t(1,x + A "_)- ts2 ] (20b)

4N

This yields the special relations at X = 0 and 1 as,

I 2NA x H lA x
I + + t(0,x + A:)

(ax) 2 2ax

2NAx
-- t(AX,'_ +A'¢)

(ax) 2

= t(0,x) Ax OAr[ HIAX
4" 0-X 0. +_ t==l

(2la)

2NAx H2Ax ]1+ (-_ + _-_--x t(1,x+Ax)

= tO'x)- I + to4 8X I., 2 AX

(21b)

After advancing t(X,x) each A _ the radiant flux gradient is advanced to _ + A_ by using the Green's

function solution in Eq. (2a) or (14). The t(X," 0 is then advanced to the next Ax using Eqs. (19) and

(21). After checking various grid sizes it was found that 81 evenly spaced points across the layer gave

accurate solutions for r,o < 5. For xD > 5, 161 points were used which gave accurate solutions for _:n <

40 A time increment ofAx = 0.0025 provided stable and time accurate solutions for all results calculated

here.

4. RESULTS AND DISCUSSION

The objective of this paper is to develop a convenient and accurate method for obtaining transient

temperature distributions in a layer with isotropic scattering and spectrally dependent absorption and

scattering properties. A Green's function solution was developed for the two-flux equations and this was

used to obtain the radiative energy source term in the transient energy equation including externally



incident radiation. The energy equation was solved with an implicit finite-difference method that included

convective boundary conditions. The transient results that are presented serve two purposes. First the

transient temperature distributions are compared with previous transient calculations using the exact

equations of radiative transfer. This will verify the accuracy of the present transient two-flux Green's

function method. The second purpose, as shown by the remaining figures, is to demonstrate some ofthe

types of transient results that can be readily obtained with the present analytical and computational

procedure.

The transient temperature distributions given here begin with a uniform initial temperature t(X,0) -- 1,

although the solution applies for any t(X,0). Figure 2 shows typical comparisons of transient two-flux

results for t(X,x) with those from a fully implicit method _ using the exact transfer equations to evaluate

the radiative flux gradient in the transient energy equation. The layer is heated at the hot side (X -- 0)

by a radiative flux equal to that from blackbody surroundings at T.t = 1.5Ti. At the other side (X = 1)

the surroundings are at a low temperature Ta = 0.5Ti so there is cooling by radiation through that

boundary. The results in Fig. 2 illustrate the thermal behavior when there is convective cooling only on

the side away from where radiative heating is applied. This simulates a possible condition for the wall

of a combustion chamber when there is primarily radiative heating from combustion gases and soot on

one side, and that side is not being film cooled.

The three parts of Fig. 2 are for optical thicknesses _:o = 2, 10 and 40 with no scattering and a refractive

index, n = 2. The temperature distributions from the present analysis are solid lines; the dashed lines in

Figs. 2a, b were calculated from the exact transfer equations 7. When _: = 2 the t(X,_) are within 1% of

steady state. The convective cooling at X = 1 produces a temperature decrease near that boundary aRer

the transient begins. The results from the present method agree very well with those from the exact

transfer equations; excellent agreement throughout the transient is obtained for _:D = 10.

The Green's function method can be applied for larger KD values than were used for the exact solution _.

Computational difficulties often arise for large _:D because of the rapid local attenuation it provides.

Transient temperatures for _:D = 40 are in Fig. 2c. They are compared with t(X,_) for an opaque layer

where radiation is absorbed and emitted only at the boundaries, and internally there is only heat

conduction. These limiting results were obtained by removing the internal radiation terms from the

computer program and adding radiative absorption and emission to Eqs. (3a,b) for opaque boundaries.

For x = 2 the t(X,x) in the opaque layer is within 1% of steady state; the distribution is slightly curved

and it becomes a straight line as _ is fia-ther increased. The results show that for _:D = 40 the layer is not

thick enough to act as an opaque layer, there are very significant internal radiation effects on the transient

and steady-state temperatures. A _:D of at least 200 is required to approach the opaque limit.

In Fig. 3 comparisons are made with the exact transfer equations for a very different set of boundary

conditions. The conditions are the same on both sides of the layer so the t(X,_) are symmetric and only

one-half of the distributions are shown. At the onset of the transient the gas temperatures are raised to

two times the initial layer temperature, and there is strong convective heating at the boundaries with

convection parameters Ht -- Hz = 5. The surrounding radiative temperatures are low and, as the layer

temperature increases, this produces radiative cooling from the layer interior. This causes the interior

temperatures to remain much lower than the surface temperature even as steady state is approached.

These results are for rD = 1 and they verifythat the present method provides accurate solutions for a

region of moderate optical thickness with large convective heating and interior radiative cooling. As

shown in previous work 7 where results are given for n = 1, there are very significant effects of internal
reflections when n = 2 as used here.

An example of a transient two-band spectral calculation is in Fig. 4. At x = 0 a radiative flux ofi_t = 3_

is applied at X = 0. The environment at X = 1 and the convecting gases at both boundaries remain at the

initial temperature, T., = T¢ = To = T i. Hence, the layer is heated by radiation on one side with radiative

cooling on the other side, and convective cooling at both sides. The steady state temperature distribution
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Figure 2. Two-flux, exact numerical, and opaque results for transient temperatures in a layer initially

at uniform temperature after exposure to radiation on one side and convective cooling on the other.

Parameters: f_ = 0, N = 0.1, n = 2, _= = 1.54, _2 = 0.54, H= = 0, Hz = 1, t=z = 0.5.

for an opaque layer is the long-dashed line, and compared with this line the final profiles reached in the

transient analysis show there is a strong effect of internal radiation. The short-dash and dot-dash lines

are for gray layers with KD = 1 and 40. The solid lines are for two bands, KDLm 1 and KDS= 40 with Z,T,=
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exposure to radiative heating on one side and

convective cooling at both sides with TIl = T o =

Ti; results for two bands compared with gray

results for each band optical thickness.

Parameters" f2 = 0, N = 0.1, n = 2, i_ = 3', _2 =

1, Ht = H 2 = 10, tit = to = 1.

= 4000 pm K; this band cutoff places about one-halfofthe incident radiation at T0_in each band. The

general behavior of the two-band results is to be between the gray distributions at each time except for

some deviation fi'om this behavior at steady state. This demonstrates the importance of including spectral

property variations. With the present method this adds very little complexity, and computer time
increased about 50%.

The two-band results are continued in Fig. 5 where scattering is introduced with f_ = 0.9 or 0.99 in both

bands. By raising fJ and keeping the same KD, internal absorption is decreased and the transient

temperatures do not respond as rapidly to the imposed radiative flux as for f_ = 0. This also yields

decreased temperatures at steady state. Since scattering is included in the two-flux relations, it does not

add to the computer time or difficulty in evaluating the solution developed here. This is in contrast with

needing to solve the scattering source function integral equation when using the exact transfer relations.

In Fig. 6 the boundary conditions are ofthe type discussed for Fig. 3 where comparisons were made with

results fi'om the exact transfer equations. For all parts of Fig. 6 the layer is subjected for _ > 0 to a high

temperature gas at To = To = 4Ti so there is large convective heating on both sides. The surroundings

are kept at T,_ = T,2 = T_ so radiative cooling occurs from the layer interior as the temperatures rise.

Since the imposed conditions are symmetric, the t(X,x) are shown for one-half of the layer. The purpose

of these figures is to illustrate that for a much different type of transient, spectral calculations including

scattering can be readily carded out with the Green's function solution. The results in Fig. 6a are base
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Figure 5. Two-flux transient temperatures in a layer initially at uniform temperature after exposure to

radiative heating on one side and convective cooling at on both sides with Ts, = To = Ti; results for two

bands with large scattering compared with results for f_ = 0. Parameters: N = 1, n = 2, q,t = 34, _ = 1,

H, = Hz = 10, tg_ = t o = 1, _.°T,, = 4000 I_m K.

cases for gray layers with KD = 0.1 and 10. The uniform steady-state temperature is also shown (dot-dash

line) for an opaque layer (KD - =). For KD= 10 the temperatures at x = 1 (which are within less than 1%

of steady state) are somewhat below the opaque limit except near the boundary; there is a small amount

of radiative cooling from within the layer that provides lower interior temperatures. Radiative cooling

has a very strong effect for KD = 0.1 producing interior temperatures considerably below the surface

temperature and the opaque limit.

Retaining the same parameters, Fig. 6b demonstrates a two-band spectral calculation with KOL= 0.1, KDS

= 10, and _.,T,, = 4000 or 2000 I_m K. Decreasing _.cT,= places more energy in the KDSband, and the

transient results change their behavior somewhat like increasing KDfor the gray results in Fig. 6a. In Fig.

6c scattering is included for f_ = 0.9 and the parameters in Fig. 6b with _.=T,_ = 2000 IJm K. Since

increasing f_ lowers the amount of absorption in the layer, there is an increased radiative cooling effect

as was obtained for Ko = 0.1 in Fig. 6a.

5. CONCLUSIONS

A method was developed using a Green's function solution in conjunction with the two-flux equations

to obtain transient temperatures in a semitransparent layer including internal radiation absorption,

emission, and scattering with heat conduction. Starting from an initial temperature distribution that can

have any arbitrary shape, the layer is heated or cooled by external radiation and convection. Transient

temperature distributions from the present method were compared with results where the radiative flux

gradient in the transient energy equation was evaluated numerically from the exact radiative transfer

equations and a fully implicit finite difference solution was used. Good agreement was obtained for
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optical thicknesses fi'om 1 to 10 and for a refractive index of 2, including internal reflections from diffuse

boundaries. Two-band spectral calculations were carried out to demonstrate how the Cn'een's function

solution can be applied in spectral bands. The method can be readily extended to include more bands.

Illustrative results also demonstrate the effect of isotropic scattering which is included in the present

method without additional complexity. The technique is easy to program, has good numerical stability,

and requires only modest computing times. It can be used to predict transient spectral behavior in

materials subjected to large transient heating by radiation or convection starting from a specified arbitrary
temperature distribution.
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